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Abstract. An experimental study of Rayleigh-Bénard turbulent convection in a cubic cell is presented. We
measure the mean temperature profiles, the root mean square (RMS) temperature profiles and the thermal
boundary layer thickness for various values of the Rayleigh number Ra and at various positions x along the
direction of large-scale circulation (LSC), using water as the working fluid. The scaled mean temperature
profiles measured at the same Ra but different x are found to be self-similar, but those measured at
different Ra do not show a universal form. In contrast, RMS temperature profiles measured at the same
position but different Ra appear to show an invariant form, whereas those with different x but of the
same Ra could not be scaled onto a single curve. Irrespective of the measuring positions and Ra, the RMS
profiles show a peak value around the boundary layer thickness, and their gradients at bottom surface
increase monotonically in the direction of LSC and with increasing Ra.

PACS. 47.27.Te Convection and heat transfer – 44.25.+f Natural convection

1 Introduction

Rayleigh-Bénard convection in the low Rayleigh number
regime (i.e. near the onset of convection) has served well as
an ideal model for the precise study of nonlinear phenom-
ena in dissipative systems. In the high Rayleigh number
turbulence regime it has also been shown to be an ideal
model for studying turbulence in a closed system. Under-
standing convection phenomenon in this “simple” system
will provide insights into the convection phenomena oc-
curring in the planets, the oceans and the atmosphere.
Rayleigh-Bénard convection refers to fluid motion in a
closed cell caused by the temperature difference between
the cooled top and the heated bottom plates. In com-
parison to the development of wall boundary layer flow,
Rayleigh-Bénard convection also has many flow states:
laminar convection, flow stability problem, the transi-
tion to turbulence and turbulent convection states. The
Rayleigh number Ra may be used to classify the differ-
ent flow states, Ra = αgL3∆T/(νκ), where α is the con-
stant pressure volume expansion coefficient of the fluid,
g is the gravitational acceleration, L is the cell height,
∆T = Tb − Tt is the difference between the bottom and
the top plate temperatures, ν is the fluid’s kinematic vis-
cosity, and κ its thermal diffusivity.

In the study of turbulent Rayleigh-Bénard convection
in the modern era, Malkus is perhaps the first to the-
oretically investigate this problem in a systematic ap-
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proach [1], who obtained Nu ∼ Ra1/3, where Nusselt
number Nu is the nondimensional heat flux across the
cell. As one of the early pioneers in the experimental stud-
ies of Rayleigh-Bénard convection, Townsend [2] measured
the mean value and the root mean square of the fluctu-
ating temperature carefully, and found agreement with
Markus’s theoretical analysis. Later on, Kraichnan [3]
obtained the expressions of heat flux, fluctuation veloc-
ity and temperature at small and large Prandtl numbers
(Pr = ν/κ) respectively. From then on, many experiments
have been conducted by utilizing different types of convec-
tion cells (cylindrical, cubic, and rectangular) and differ-
ent kinds of fluids (water, air, gaseous helium, mercury,
etc.). For a reference of some of these earlier works, please
see the review by Siggia [4].

In 1987, Heslot et al. [5] carried out a high preci-
sion experiment. In their study, the fluid medium was
low temperature gaseous helium, and the convection cell
was a vertical cylinder with equal diameter and height.
By changing the helium density, these authors obtained
the experimental Rayleigh number up to 1011, which en-
abled them to study the Nusselt number dependence of
the Rayleigh number over a wide range (in a later exper-
iment, using an aspect ratio 1/2 cell, the Chicago group
achieved Ra ∼ 1015 [6]). According to the temporal tem-
perature signals and Nu ∼ Ra curve, the Chicago group
divided the Rayleigh-Bénard convection into six regions,
i.e. the onset of convection (Ra = 5.8 × 103), the onset
of the oscillatory instability (Ra = 9 × 104), the chaotic
state (Ra = 1.5 × 105 ∼ 2.5 × 105), the transition region
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(Ra = 2.5 × 105 ∼ 5 × 105), the soft turbulence state
(Ra = 5 × 105 ∼ 4 × 107) and the hard turbulence state
(Ra ≥ 4 × 107). The division of soft and hard turbulence
is an important contribution to the Rayleigh-Bénard con-
vection problem [7]. In the soft turbulence state, the ex-
perimental results indicated that Nu ∼ Ra1/3, and the
probability density for the temperature fluctuation of the
center region was Gaussian-like. In contrast to the soft
turbulence state, Nu is proportional to Ra0.282 in the
hard turbulence state, and the probability density for the
temperature fluctuation of the center region was exponen-
tial. Another feature of the hard turbulence state is that
there exists a large-scale circulation that spans the height
of the convection cell [8]. For cylindrical cell, the large-
scale circulation is confined in an azimuthal plane of the
cylinder; and for cubic cell, it is within a vertical diagonal
plane [9,10]. To understand the hard turbulence regime in
Rayleigh-Bénard convection, many experimental, numer-
ical, and theoretical efforts have been made in the last
decade or so. For a recent review on this subject, please
see Grossmann and Lohse [11], and Kadanoff [12] for a
more pedagogical description on the outstanding issues.

One central focus in the studies of turbulent convec-
tion is to determine how the efficiency of heat transport
(i.e. the Nusselt number Nu) depends on the Rayleigh
number Ra, which measures the relative strength of buoy-
ancy over dissipation. More importantly, the main ques-
tion has been: What is the real mechanism that dictates
heat transport, or the Nu and Ra relationship, in the
turbulent state of thermal convection? As already men-
tioned above, a defining feature of hard turbulence has
been the power law dependence: Nu ∼ Raβ with the
exponent β = 2/7. This result is now being challenged
both experimentally and theoretically. Questions arise on
whether the value of β is 2/7 [13], or even whether there
should be a single power law [12,14]. One thing is clear,
however, that these studies have made it more apparent
that global measurements, such as Nu vs. (Ra, Pr), are far
from sufficient for an understanding of the turbulent con-
vection problem. Rather, one needs to make quantitative
measurements of the local properties of the temperature
and velocity fields, such as boundary layer thickness and
shear rate, and test some of the specific predictions and
assumptions concerning local quantities made in the vari-
ous theoretical models. The thermal and viscous boundary
layers in the convection cell play key roles in determining
the efficiency of heat transport and the various scaling and
statistical properties [15]. However, most of the boundary
layer measurements were conducted along the central axis
of a convection cell [16]. A question naturally arises as
to whether the boundary layers are uniform across the
horizontal conducting plates on which they reside. The
existence of possible spatial nonuniformity of the bound-
ary layers was first suggested by the numerical results of
Werne [17] in his two-dimensional (2D) simulation study
of the hard turbulence regime. Belmonte et al. [18] also
pointed out that in order to take into account the heat
transported by thermal objects like plumes, the shear pro-
duced by the large scale circulation near the boundary

should have dependence on horizontal positions and the
need to experimentally check the horizontal dependence
of both viscous and thermal boundary layer properties.
Ching [19] assumed horizontal dependence for both the
shear rate and the thermal boundary layer thickness and
obtained a scaling relation between the heat flux and the
shear rate that agrees better with the direct experimental
measurements of these quantities by Xin et al. [20] and
Xin and Xia [21] than that from the model of Shraiman
and Siggia [22]. To investigate the spatial structures of
the thermal boundary layer experimentally, Lui and Xia
made the first measurement on the positional variation of
thermal boundary layer in a cylindrical convection cell and
found that the thermal layer indeed has a very strong posi-
tional dependence [23]. However it is known that the flow
field depends on the geometry of the cell and boundary
layers are influenced strongly by the flow field. Recently,
Daya and Ecke also presented experimental evidence sug-
gesting that statistics of both the temperature and veloc-
ity fields may depend on the geometry of the cell [24].
Moreover, in the work of Lui and Xia, the spatial struc-
ture and scaling properties of the RMS temperature fluc-
tuations were not studied and only the mean temperature
profiles were investigated [23]. Thus, it is highly desirable
that the spatial variations of both the mean and statisti-
cal quantities of the thermal boundary layer are investi-
gated and their dependencies on the geometry of the cell
be checked. To this end, we have carried our systematic
measurements of the mean and RMS temperature profiles,
in a cubic convection cell filled with water, with respect
to both their positional dependence and Rayleigh number
dependence.

The rest of this paper is organized as follows. In Sec-
tion 2, we give detailed descriptions of our convection cell
and the thermistor probe used for local temperature mea-
surements. The experimental results are presented and
analyzed in Section 3, which is divided into two parts.
Section 3.1 discusses the properties of the profiles of the
mean temperature as a function of the vertical distance z
from the bottom plate and at various points (to be spec-
ified below) along the direction of the large-scale mean
flow (which is along one of the diagonals of the bottom
plate) and the associate thermal boundary layer thick-
ness; these include the Rayleigh number dependence and
the positional variation along the mean flow direction of
these quantities. Section 3.2 presents the results on the
profiles of the RMS temperature σ as a function of the
vertical distance from the bottom plate and at various
points along the direction of the large-scale mean flow.
The properties of the maximum value (σm) of σ at vari-
ous points along the diagonal and the Ra-dependence of
both σ and σm will also be presented. We summarize our
findings and conclude in Section 4.

2 Experimental

Figure 1 shows a schematic drawing of the convection cell,
which is a cube of dimension L = 25 cm, thus the aspect
ratio is unity. The top and bottom plates were made of
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thermistors

temperature 
probe

Fig. 1. A schematic drawing of the convection cell used in the
experiment. The movable thermistor probe for local tempera-
ture measurements is also shown. The four “black dots” inside
the top and the bottom plates are imbedded thermistors for
measuring temperatures in the respective plates.

copper and their surfaces were gold-plated. The sidewall
of the cell consists of four transparent Plexiglas plates.
The upper and lower plates are held together by stain-
less steel posts with Teflon spacers at the eight corners.
The temperature of the upper plate is regulated by pass-
ing cold water through a cooling chamber fitted on its
top. To ensure uniform temperature distribution across
the plate, spiral channels are cut on the back of the top
plate so that the incoming and the outgoing water are
passing each other inside the plate. The lower plate is
heated uniformly at a constant rate with an imbedded
film heater. The temperature difference ∆T between the
two plates is measured by four thermistors imbedded in-
side the plates, two in each one. The locations of the ther-
mistors at each plate are the same. One is located at the
middle of one side of the plate about 45 mm from the edge,
the other one is at the symmetric position on the oppo-
site side. They are imbedded at a depth of 4 mm from
the fluid-contacting surface of the plates (thickness of the
copper plates: 12 mm). The measured relative tempera-
ture difference between two thermistors in the same plate
is found to be less than 1% for both plates at all Ra, indi-
cating that temperature is uniform across the horizontal
plates. In our experiment, water is used as the convecting
fluid, and the average temperature of the water in this
convection cell is kept near room temperature and only
the temperature difference across the cell is changed (the
typical values for the average fluid temperature and the
temperature difference across the cell are 25 ◦C and sev-
eral tens of degrees centigrade, respectively). In this way,
the variation of the Prandtl number Pr = ν/κ is kept at
minimum (Pr ≈ 7).

The thermistors used in the local temperature mea-
surements had a diameter of 300 µm and an in-water ther-
mal time constant of 10 ms (AB6E3-B10KA103J, Ther-
mometrics Inc.). In order to access different positions in

the convection cell, we used a specially designed temper-
ature probe (see Fig. 1). A rectangular shaped stainless
steel rod is soldered perpendicularly on a stainless steel
capillary tubing of outer diameter 3.0 mm and inner di-
ameter 2.0 mm. The horizontal rod had a cross-section
of 2.2 mm in height and of 0.75 mm in width. A Plex-
iglas cube of length 4.0 mm can slide freely on the rod.
The rod is marked at every 5.0 mm interval to indicate
the exact position of the cube. The thermistor is attached
at the end of a syringe needle (outer diameter 0.5 mm,
length 45 mm) that is fixed to the cube. To move the nee-
dle horizontally, two fishing strings of diameter 0.2 mm
are tied to the Plexiglas cube. By pulling the strings sep-
arately, one can move the needle in either direction along
the rod to the desired horizontal position. The leads of the
thermistor are fed through the needle, and then, together
with the fishing strings, through the tubing to the outside.
The tubing is fixed on a vertical translation stage that is
mounted right above the filling stem of the convection cell.
The stage has a total travel distance of 10.0 cm and a pre-
cision of 0.01 mm, and is driven by a computer-controlled
stepper motor.

The temperature profile measurement is conducted au-
tomatically along the vertical direction, and a 30-minute
time series is recorded by a 71/2-digit multimeter (Keithley
Model 2001) at each position. The time-average (or mean)
and the RMS values of the local temperature are then
obtained from the measured resistance using a calibrated
conversion curve. A typical temperature profile consists of
more than 30 vertical positions. In the region near the bot-
tom plate surface, there is a large temperature gradient.
To obtain valuable and precise information, the measuring
step is chosen to be less than 0.1 mm there. After com-
pleting one profile measurement, the thermistor is then
moved to a different horizontal position and the measure-
ment is repeated. We measured the horizontal variation of
the thermal boundary layer along the direction of large-
scale circulation (LSC).

To determine the direction of the LSC, we employed
the following method. After the convective motion is fully
established, a stainless steel tube with a very light string
attached to its end is inserted into the convection cell;
near the lower plate of the cell, the flow is unidirectional,
so the string follows the flow and indicates its direction.
It has been found previously [9,20] that once established,
the direction of LSC will remain the same for different
Rayleigh numbers.

3 Results and discussion

Before presenting the results, let us first define the coordi-
nate system used in the experiment. Let the center of the
bottom plate as the origin of right-hand Cartesian coor-
dinates, with the x-axis along one of the diagonals of the
bottom plate (the direction of the large-scale flow) and
the z-axis points upward. The positive x direction points
to the mean flow direction near the bottom plate and the
y-axis is defined by the right-hand rule. Note that in the
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Fig. 2. The scaled mean temperature (dots) and the RMS
temperature σ (circles) vs. the vertical distance z at Ra =
3.1 × 109. The inset shows enlarged portions of the profiles
near the boundary layer.

present experiment no variation with y has been made and
all measurements are made with y = 0.

Systematical measurements are conducted at fifteen
positions on the x-axis. They are x = 15, −12, −10, −8,
−6, −4, −2 cm (hereafter referred as upstream positions);
and x = 2, 4, 6, 8, 10, 12, 15 cm (hereafter referred as
the downstream positions) on the x-axis, plus the one at
the center of the bottom plate (x = 0). The varying range
of the Rayleigh number in the present experiment is from
5 × 108 to 2.4 × 1010.

3.1 Mean temperature profiles and thermal boundary
layers

Figure 2 shows a typical profile of the time-averaged
T (x = 0, z) = T (z) (solid circle) and RMS σ(x = 0, z)
(open circle) values of the temperature as a function of the
distance z along the central axis at Ra = 3.1×109. In the
figure, the mean temperature T (z) has been subtracted
from that of the bottom plate Tb and then normalized by
the temperature difference ∆T across the convection cell.
The insert indicates an enlargement of the region near the
plate, where the thermal boundary layer thickness δth is
defined as the distance at which the extrapolation of the
linear portion of the profile equals the temperature of the
horizontal part. It is seen from the figure that the mean
temperature profile can be divided into three regions: a lin-
ear portion near the plate where the heat is transported
mainly by conduction; a plateau region away from the
plate, where temperature gradient is zero and convection
dominates; and a transitional region in between. The RMS
profile shows a maximum near δth, which indicates that
temperature fluctuations are the strongest in the thermal
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Fig. 3. Viscous boundary layers (solid symbols) and thermal
boundary layers (open symbols), measured respectively in a
cubic cell (squares) and a cylindrical cell (circles), as versus Ra.
(a) normalized by the cell height L; (b) normalized by the
streamwise dimension l of the bottom plates (see text for the
fitting lines).

boundary layer region. This feature will be discussed in
detail in Section 3.2.

The Ra-dependence of the thermal boundary layer
thickness δth(x = 0) ≡ δth(0) measured at the center
(x = 0, y = 0) of the bottom plate for the present cu-
bic cell can be fitted to a power-law which gives δth(0) =
575Ra−0.28 (mm). To see whether the scaling or ampli-
tude of the boundary layers depend on the cell geom-
etry, we compare this result with that obtained from
a cylindrical cell also of aspect ratio one (with height
equal to 19.6 cm). Figure 3 plots the normalized thermal
layer thickness δth(0)/L for the cubic cell obtained in the
present work (open squares) and that for the cylindrical
cell (open circles) from reference [23], which corresponds
to δth(0) = 425Ra−0.285 (mm). Also plotted in the figure
are the viscous boundary layer thickness δv(0)/L obtained
at the center of the bottom plate for the cubic cell (solid
squares, fitting corresponds to δv(0)/L = 0.69Ra−0.18)
and the cylindrical cell (solid circles, fitting corresponds
to δv(0)/L = 0.51Ra0.16) respectively. The cubic cell re-
sult was measured by Qiu and Xia [10], in which the same
cell was used as the current experiment. The cylindrical
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cell result was measured by Xin et al. [20] using the same
cell as that in reference [23]. It is seen clearly from the fig-
ure that the scaling behavior is the same for the cubic and
cylindrical cells and it is true for both the viscous and the
thermal layers. On the other hand, the amplitudes appear
to depend on cell geometry for both the viscous and the
thermal layers. Grossmann and Lohse suggested recently
that the relevant streamwise length scale for the plates
should be the width of the plate l [25]. In Figure 3b we
plot the same boundary layers shown in 3a but normal-
ized by l instead of by L, with the same symbols. Here
l =

√
2L for the cubic cell since the flow here is along the

diagonal near the plates and l = L for the cylindrical cell.
Note that L = 25 and 19.6 cm for the cubic and cylin-
drical cells, respectively. We see that with this normaliza-
tion, the amplitudes for the boundary layers still depend
on cell geometry. But now both the thermal and viscous
layer thicknesses for the cubic cell are thinner than those
for the cylindrical cell. We stress that it is not our inten-
tion to test which normalization is the more appropriate
one to use and nor can we tell. We make these compar-
isons to show that the amplitudes for both the thermal
and viscous boundary layers depend on the cell geometry
irrespective of what normalization is used, while the scal-
ings with Ra are the same. Note that this is not necessar-
ily contradicting the findings by Daya and Ecke that the
scalings of fluctuating quantities depend on cell shape [24].
Note also that Qiu and Xia [26] have reported previously
that the measured Nusselt number Nu for the cubic and
the cylindrical cells are the same in terms of both ampli-
tude and scaling with Ra. Since Nu can be related to the
global average of the position-dependent boundary layer
thickness (see, for example, Eq. (3) in Ref. [23]), the fact
that the two cells have the same Nu but different thermal
layer thickness simply implies that the spatial structures
of the boundary layer are different for the two cells. This,
of course, should come as no surprise and will be seen
below explicitly.

Now we focus our attention on the positional depen-
dence of the thermal boundary layer. Figure 4 shows the
measured thermal layer thickness δth(x) as a function of
the coordinate x along the direction of the LSC, for four
different values of Ra. In the figure, δth(x) has been nor-
malized by the thickness δth(0) measured at the center
of the bottom plate, and x by one half of the cell diago-
nal

√
2L/2 = 0.707L. It is seen from Figures 4a and b (for

Ra = 1.1×109 and 3.1×109 respectively) that there exists
a minimum value of the boundary layer thickness δth(x)
in the central region of the bottom plate, but the distri-
bution is asymmetric and with increasing Ra the position
of its minimum is shifted from upstream (x < 0) to down-
stream (x > 0) of the LSC. These features of the thickness
profile are quite different from those seem in a cylindrical
cell, where a symmetric “V ” shape of the boundary layer
profile is found [23]. We attribute this difference to the
effect of the sharp corners in the cubic cell on the flow,
which influences the temperature field. An asymmetric
distribution of δth(x) has also been found in a numeri-
cal study [17], where a square geometry was used. Thus
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Fig. 4. Normalized thermal boundary layer thickness vs. nor-
malized positions x along the direction of LSC for four values
of Ra.

we see an example of cell geometry influences the charac-
teristics of thermal boundary layer structures in turbulent
convection. For Ra ≥ 8.5× 109, it is seen from Figures 4c
and 4d that, except very close to the sidewall region, the
thermal boundary layer thickness remains nearly constant.
Lui and Xia [23] pointed out that, with increasing Ra, the
thermal boundary layer distribution would eventually be-
come uniform in the center of the bottom plate. Although
the trends of thermal boundary layer thickness distribu-
tions are the same for the two experiments, the transi-
tional Ra is seen to be different in these cases. This is
another manifestation of how cell geometry influences the
spatial structures and temperature field.

We examine below how the measured temperature pro-
files vary with position. Figure 5 shows the scaled tem-
perature profiles measured at various positions along the
direction of LSC. In Figure 5a only portions near the
boundary layer region with z/δth ≤ 5.0 are shown and
they are all measured at the same Ra (=6.0 × 109). For
other values of Ra, we obtain the same result. It is seen
from this figure that, for positions both upstream and
downstream of x = 0, the measured temperature profiles
all collapse onto a single curve (see Fig. 5b for symbol leg-
ends). This feature has also been observed in the exper-
iment using a cylindrical cell [23]. Thus, it appears that
the mean temperature profiles can be scaled to collapse
onto a single curve (in the range of z/δth ≤ 5.0) irrespec-
tive of the cell geometry. In the 2-D numerical simulation
of hard turbulence, Werne [17] found that the tempera-
ture profile is self-similar only in the range of z/δth ≤ 1.0.
Besides this small region, his results indicate that the tem-
perature profiles change with both measured position and
Ra. To examine the positional dependence of tempera-
ture profiles over a wider range, we show in Figure 5b the
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Fig. 5. (a) Near-boundary portion of the scaled temperature
profiles measured at various positions x along the direction of
LSC at Ra = 6.0 × 109. (b) The complete profiles of those
in (a), the symbol legends also apply to (a).

complete profiles of those shown in (a) (note that the hor-
izontal axis is now the vertical distance z scale by the cell
height L and z/L corresponds roughly to z/δth = 75). It
is seen from this figure that in the bulk region some of the
scaled temperature profiles start to depart from the mean
value [Tb−T (z)]/∆T = 0.5, which shows that the temper-
ature profiles are self-similar only in regions not far from
the boundary layers. Moreover, we also found that there
exists an apparent temperature inversion just outside the
bottom boundary layer region (i.e. the mean temperature
near the hot boundary layer is colder than that in the
bulk region) in the temperature profiles measured at po-
sitions of thinnest boundary layers, i.e. at values of x for
which δth(x) is minimum. Figure 6 shows two such exam-
ples. This inversion was not seen in cylindrical cells [23]
and thus is a consequence of the particular geometry of
the cell. Apparently this inversion is caused by an “exces-
sive” amount of cold plumes brought from the top plate by
the particular flow pattern that is dictated by the cell ge-
ometry. Please note that in Figure 6 only a portion of the
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Fig. 6. Scaled temperature profiles showing the existence
a temperature inversion and for which δth is the smallest:
(a) x = −2 cm, Ra = 1.1×109; (b) x = −10 cm, Ra = 6.0×109.

profile close to the boundary layer is shown (for example,
in Fig. 6b, the largest value of z/δth is about 40, which is
about 4 cm since the corresponding boundary layer thick-
ness is about 1 mm), thus it appears that (Tb − T )/T is
below 0.5. But in the complete profiles the value of 0.5
for (Tb − T )/T will be recovered near the central part of
the cell.

We now look at scaling properties of the temperature
profiles with respect to the Rayleigh number. Figure 7
plots several profiles measured at the center of the bot-
tom plate with their values of Ra indicated on the graph.
It is seen that the shape of the profiles in the ‘transitional’
region varies with Ra in a monotonic fashion. This is in
agreement with the results obtained in cylindrical cell [23],
but in contrast to the results from velocity measurements
where it was found that velocity profiles measured at dif-
ferent values of Ra have an invariant form [10,20]. This
implies that the effects of Ra on mean temperature and
velocity distributions are different. It should be noted



J. Wang and K.-Q. Xia: Spatial variations of the mean and statistical quantities 133

z/δth(0)

0 2 4 6 8 10

(T
b-T

)/
∆T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ra=5.7x108

Ra=2.1x109

Ra=8.5x109

Fig. 7. Scaled temperature profiles measured at the central
axis (x = y = 0) of the cell, at various Ra.

that, in contrast to our results, Belmonte, Tilgner and
Libchaber [27] found (also in a cubic convection cell) that
temperature profiles of different Ra could be scaled to
collapse onto a single curve (but Ra in that experiment
varied only over a narrow range, all around 108). Lui and
Xia [23] attributed this difference to the large difference in
Prandtl number in the two experiments. In the experiment
reported in reference [27], pressurized gas was used as the
working fluid and the Prandtl number was about 0.7. To
settle this difference, it seems future experiments need to
be conducted in low Pr fluids and over a wide range of Ra.

3.2 Properties of the RMS temperature profiles

We now present results for the RMS temperature pro-
file σ(x, z). First, we look at the profiles σ(z) measured
at the central axis (x = 0) for different values of Ra.
Figure 8a shows a plot of nine profiles with the verti-
cal distance from bottom plate z scaled by the bound-
ary layer thickness δth(0, 0) at the center of the bottom
plate (x = y = 0). We see from the figure that the max-
imum value, σm, of the RMS profile increases with Ra,
this means that the temperature field become more tur-
bulent with increasing Ra. The more prominent feature
is that σm occurs at about z/δth(0, 0) = 0.8 regardless
the value of Ra (in fact the scatter of the data does not
allow us to distinguish whether it is 0.8 or 1.0, but for
comparison with Figure 10 below, we use 0.8 for the sake
of discussion). It is seen from Figure 2 that σm occurs ap-
proximately at the upper edge of the thermal boundary
layer, now we see that this is true for all the measured
profiles across a wide range of Ra. In fact, we may now
define the peak position of σ as where the thermal bound-
ary layer is located. Recall that the definition we took for
δth is an operational one and since σm occurs at 0.8δth
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Fig. 8. (a) Profiles of the RMS temperature fluctuations mea-
sured at the central axis (x = y = 0) of the cell, and at vari-
ous Ra from 5.7×108 to 1.1×1010 . (b) The same profiles scaled
by σm for their respective values of Ra, the symbol legends also
apply to (a). The dashed line indicates the approximate posi-
tion of the maximum value σm.

for all Ra, the two definitions will give, apart from a con-
stant shift, essentially the same results. It should also be
noted that the position z/δth(0, 0) = 0.8 is a characteris-
tic point where the coherent structure should be detected
as those done for wall turbulence [28,29]. Figure 8b plots
the scaled RMS profiles σ/σm with the scaled vertical dis-
tance z/δth(0) from the lower plate, here we see that over
a wide range of Ra and within the data scatter these pro-
files appear collapse onto a single curve irrespective of Ra.
This is in contrast to the profiles of the mean temperature
where systematic variations of shape with Ra are clearly
observed (Fig. 7). Because the RMS data are much more
noisy than the mean profile, the feature will need to be ver-
ified with more accurate measurements, which presumably
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Fig. 9. Scaled maximum value σm of RMS temperature profile
measured at the central axis of the cell vs. Ra. The solid line
is a power law fit: σm/∆T = 1.13Ra−0.14.

will entail much longer time averages in data acquisitions.
If proven to be true, it will mean that the ‘fluctuating
quantities’ are more universal than mean quantities in tur-
bulent convection. We next look at the Ra-dependence of
σm for profiles measured at cell center (x = 0). Figure 9
shows σm normalized by the temperature difference ∆T
against Ra in log-log plot where the solid line represents
a best fit to the data: σm/∆T = 1.13Ra−0.14±0.03. To our
knowledge, the Ra-dependence of σm has not been ob-
tained before. It is also interesting that σm has the same
exponent as the RMS temperature fluctuation σc mea-
sured at the cell center [7,30] of a cylindrical cell. Be-
cause the data in Figure 9 is somewhat scattered, more
accurate measurements are certainly needed to verify the
above exponent.

We now examine the spatial variations of the profiles
of the RMS temperature σ. Figure 10 shows a group of
profiles of σ measured at various positions along direc-
tion of the LSC at Ra = 6.0 × 109, with (a) those from
upstream positions and (b) downstream positions (note
that the mean flow is along the x-axis and in the posi-
tive direction). Similar to Figure 8b, here σ(x, z) is nor-
malized by its maximum value σm(x) and the distance z
by the thermal layer thickness /δth(x), all correspond-
ing to the same position x. Both (a) and (b) show that
within the uncertainty of the experiment σm occurs at
z/δth(x, 0) ≈ 0.8 for different values of x, as indicated by
the dashed line in the figure. When combining this with
the result shown in Figure 8, we see that the measured σm

occurs at z ≈ 0.8δth(x, 0) irrespective of the values of Ra
and the position x, which further support our earlier con-
clusion that these two quantities represent essentially the
same length scale. It is also clear from the figure that
these profiles could not be scaled to collapse on a single
curve (i.e. when the vertical axis is normalized by σm for
the respective x positions), even for small ranges of z/δth.
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Fig. 10. Profiles of the RMS temperature fluctuations mea-
sured at various positions x along the direction of LSC and
Ra = 6.0 × 109: (a) upstream region (x < 0) and (b) down-
stream region (x > 0). As in Figure 8, the dashed lines indicate
the approximate position of the maximum value σm.

Whereas in Figure 8, it is seen that profiles for different
values of Ra but at the same x position collapse reasonably
well within the uncertainty of the experiment. Thus, the
RMS profiles appear to show opposite behavior in contrast
to the mean temperature profiles, where invariance with
respect to position (Fig. 5) but not with respect to Ra
(Fig. 7) has been observed. Given the fact that the RMS
data are more scattered than the mean values, we believe
that further and more precise measurements are needed
to unambiguously establish these results.

In Figure 11 we show how σm varies with position and
with Ra, where it is seen that σm increases with Ra. More-
over, for each Ra the distribution of σm appears to have
an asymmetrical “V ” shape about the central axis, with
upstream slope greater than the downstream value for the
higher Ra profiles. Note that the minimum position in the
profile of the lowest Ra(1.1× 109) appears to have shifted
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Fig. 11. The profiles of σm along the direction of LSC for
various Ra, the x-axis is scaled by half of the diagonal length
of the bottom plate: • Ra = 1.1 × 109; o Ra = 2.1 × 109;
� Ra = 3.1 × 109; � Ra = 6.0 × 109; � Ra = 8.5 × 109; and
� Ra = 1.1 × 1010.

from x = 0 to a larger value (the figure is somewhat com-
pressed, but an expanded view reveals this more clearly),
it remains to be seen if this is a trend for lower values
of Ra.

Figure 12 shows how the gradient of σ at bottom plate
(∂σ/∂z|z=0) varies along the direction of the LSC for dif-
ferent values of Ra. It is seen that there is a trend of
∂σ∂z|z=0 decrease almost monotonically along the mean
flow direction from upstream to downstream (the verti-
cal axis is somewhat compressed, but an expanded view
will reveal this trend more clearly). It is seen that the
gradient increases with increasing Ra in both its magni-
tude and its slope with respect to x (the exception may
be that for Ra = 1.1 × 1010, where the slope appears to
be smaller than those with lower Ra). We think the larger
gradient at upstream positions may be due to the large
number of cold plumes brought down by the mean flow
(LSC) from the top plate. As these hot plumes traveled
downstream along the bottom plate, they get mixed with
some of the hot plumes there, resulting in a reduction in
the gradient of σ.

4 Summary

Temperature time-series at various values of Ra and at
various positions along the direction of large-scale circu-
lation (LSC) of a cubic convection cell have been mea-
sured, with the control parameter Ra spanning the range
of 5.7 × 108 ∼ 1.1 × 1010. We obtain the (time-averaged)
mean temperature profiles and the profiles of the root-
mean-square (RMS) standard deviation of the fluctuat-
ing temperature. From these, the thermal boundary layer
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Fig. 12. Profiles of the vertical gradient of the RMS tempera-
ture at bottom plate (∂σ∂z|z=0), as functions of the normalized
distance along the direction of LSC for various values of Ra.
The symbols are the same as those in Figure 11.

thickness and its spatial and Ra variations are obtained.
Specifically, the following are observed.

(i) When the mean temperature profiles are properly
normalized, two distinct features emerge that further sup-
port the earlier results found in a cylindrical convection
cell. For the same Ra, the scaled mean temperature pro-
files measured at different horizontal positions along the
mean flow are found to be self-similar in the range of
z/δth ≤ 10.0. For the same position but different Ra, the
scaled profiles are found to be Ra-dependent, i.e. they
cannot be brought to collapse onto a single curve.

(ii) The thermal boundary layer thickness varied sig-
nificantly in the direction of large-scale circulation, and
there exists a “valley” for Ra ≤ 6.0 × 109. In contrast
to the findings in the cylindrical cell, the “thickness pro-
files” are asymmetric. Moreover, position of the minimum
of the profile (or valley) appears to shift with Ra. For
Ra ≤ 2.1 × 109, the position of valley is in the upstream
side; and for Ra ≥ 3.1× 109, it is in the downstream side.
When Ra ≥ 8.5× 109, the thickness tends to become uni-
form. All these features are different than those observed
in a cylindrical cell, showing evidence of the geometry of
the cell influences the structures of the temperature field.

(iii) For positions corresponding to the valley of the
thermal boundary layer thickness profiles, the normalized
mean temperature distribution has an inversion in the re-
gion near bottom plate. We think this inversion is caused
by an “excessive” amount of cold plumes brought from the
top plate by the particular flow pattern that is influenced
by the cell geometry.

(iv) In contrast to the mean temperature case, the
RMS temperature profiles measured at various Ra but
at the same location appear to show an invariant form,
i.e. they can be brought to collapse onto a single curve
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when properly scaled. Whereas profiles of the same value
of Ra but measured at different positions, along the bot-
tom plate in the mean flow direction, could not be scaled
to collapse onto a universal curve.

(v) The peak value (σm) of RMS temperature pro-
files is found to be located at z/δth = 0.8 irrespec-
tive of the Rayleigh number Ra and the measuring po-
sition x. The profiles of σm is found to also have an
asymmetric “V ” shape about the central axis, Moreover,
σm measured at various Ra appear to follow a power law
σm/∆T ∼ Ra−0.14.

(vi) The gradient of σ at the bottom plate (∂σ∂z|z=0)
is found to be decreasing monotonically along the direc-
tion of the LSC, from upstream to downstream. We at-
tribute this to the interactions between plumes and the
mean flow.

The experimental results presented in this paper
demonstrate that the hard-turbulence regime in thermal
convection is a complex phenomena with many rich fea-
tures, and most of the existing models provide only a par-
tial understanding of this turbulence state. The data pre-
sented here provide important information and constraints
for the formulation of future theoretical models. Clearly,
to have a complete understanding of the interplay between
the large-scale circulation and the heat flux, one needs to
map out the full spatial structure of the temperature and
the velocity fields in the boundary layer region in future
experiments.
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